
Adaptive Attention Network for Review Sentiment
Classification

Chuantao Zong1, Wenfeng Feng1, Vincent W. Zheng2, and Hankz Hankui Zhuo1(B)

1School of Data and Computer Science, Sun Yat-Sen University, Guangzhou,China
{zongcht,fengwf}@mail2.sysu.edu.cn,zhuohank@mail.sysu.edu.cn

2Advanced Digital Sciences Center (ADSC), Singapore
vincent.zheng@adsc.com.sg

Abstract. Document-level sentiment classification is an important NLP task.
The state of the art shows that attention mechanism is particularly effective on
document-level sentiment classification. Despite the success of previous atten-
tion mechanism, it neglects the correlations among inputs (e.g., words in a sen-
tence), which can be useful for improving the classification result. In this paper,
we propose a novel Adaptive Attention Network (AAN) to explicitly model the
correlations among inputs. Our AAN has a two-layer attention hierarchy. It first
learns an attention score for each input. Given each input’s embedding and atten-
tion score, it then computes a weighted sum over all the words’ embeddings. This
weighted sum is seen as a “context” embedding, aggregating all the inputs. Fi-
nally, to model the correlations among inputs, it computes another attention score
for each input, based on the input embedding and the context embedding. These
new attention scores are our final output of AAN. In document-level sentiment
classification, we apply AAN to model words in a sentence and sentences in a
review. We evaluate AAN on three public data sets, and show that it outperforms
state-of-the-art baselines.

1 Introduction

Sentiment classification [12] is an important task in NLP. Document-level sentiment
classification attracts a lot of research interests. In general, review sentiment classifi-
cation task is modeled as either a binary (i.e., “positive” or “negative”), or multi-class
classification (e.g., ratings from “one star” to “five stars”) problem.

Earlier work on sentiment classification relies on engineering useful features from
the data to build the classification models. Some may also consider user features and
product features [2]. With the development of neural network, recent study starts to
explore using automatic feature learning for the review sentiment classification. For ex-
ample, the state of the art uses various hierarchical neural networks to model the words
and the sentences in a review [17, 1]. In particular, Chen et al.propose to model the
representation of a review through a word-sentence-review hierarchy. To differentiate
the importance of each word and each sentence in generating the whole review’s rep-
resentation, they introduce the attention mechanism [21] to model a weight for each
word. Then they sum up the word embeddings in a sentence with the resulting weights
as the sentence’s embedding. Similarly, they apply attention for a weighted sum of the
sentences as the review’s representation.

2 Adaptive Attention Network for Review Sentiment Classification

Although the attention mechanism has shown to significantly improve the classifica-
tion results [1], we notice that it assumes each input (word or sentence) as independent.
Thus it overlooks the input correlations, which can be useful for the classification. Take
Fig. 1(a) as an example. To The review is consist of one sentence. It shows the word at-
tention scores for some salient words in a review. As we can see, “high” has a relatively
large word attention score, indicating its high importance in representing the whole re-
view. However, as “high” in the shop reviews often associate with price, it usually holds
a negative polarity. Therefore, given a large attention score for “high”, we tend to assign
a negative polarity to the whole review. This results in a conflict between the predicted
rating of “three stars”, and the ground truth rating of “five stars”. The fundamental
reason of having such a conflict is that, the attention mechanism treats each word’s at-
tention independently. This overlooks the context in this specific review, i.e., what this
review is mainly about and what the leading polarity is. From a human’s perspective,
we can easily tell that this review is mainly about an endorsement of this dessert shop’s
yogurt, and the leading polarity is highly positive (i.e., “happy”, “amazing”) despite the
“high” price.

always happy (0.074) here great yogurt and toppings

brownies are amazing (0.076), the price is kinda high

(0.193) or I would be here more often.

NSC+LA (predicted rating: 3; gold rating: 5):

(a) Results from NSC+LA (state of the art) [1]

always happy (0.109) here great yogurt and toppings

brownies are amazing (0.123), the price is kinda high

(0.112) or I would be here more often.

AAN (no U, no P) (predicted rating: 5; gold rating: 5):

(b) Results from AAN (ours)

Fig. 1. Salient words (in boldface) with highest word attention scores in a sample review.

Is it possible for us to take the context of a specific review into account, and adap-
tively assign the attention for each salient word (e.g., discount the weight of “high”)?
Our answer is yes! In this paper, we propose a novel Adaptive Attention Network (AAN)
to explicitly model the correlation between the inputs (e.g., words and sentences in the
review domain) in the attention definition. Our AAN has a deeper two-layer attention
hierarchy. Take the word attention in a sentence as an example. AAN first computes an
attention score for each word in the sentence, by employing the outstanding attention
mechanism of Chen et al.[1]. Then it introduces a context embedding, which aggre-
gates all the words’ embedding vectors with the attention scores by a weighted sum. To
model the correlation, it computes another attention score for each word, based on how
much the word matches the context embedding. These new attention scores are the final
outputs of AAN for the words in a sentence. Similarly, we also apply AAN to model the
sentence attention in the review. By utilizing the input correlations among words and
sentences, AAN is able to improve the review comprehension and thus the classification
results. As shown in Fig. 1(b), under our AAN mechanism, the word attention scores of
salient words “happy” and “amazing” all significantly increase, whereas that of “high”
decreases, which eventually helps us generate a perfect rating prediction of “five stars”.
Note that in this sample review we only have one sentence, thus the sentence attention
score from AAN is one.

We summarize our contributions as follows.

C. Zong et al 3

•We identify an important limitation of the existing attention mechanism, and develop
an adaptive attention network to model the input correlations in attention modeling.

• We evaluate AAN with three public, real-world review sentiment datasets. We show
that AAN outperforms state-of-the-art baselines.

2 Related Work

Sentiment classification is usually seen as a special case of text classification. As the
performance of text classifiers heavily relies on the extracted features, early work on
sentiment classification mostly focuses on designing useful features from text content
[12], sentiment lexicons [4], social network [2] and so on. With the development of
neural network, some recent studies start to explore the application of deep learning in
sentiment classification to avoid engineering the features. For example, to model the
text’s syntactic structure, Socher et al.explored a set of recursive neural networks mod-
els such as Recursive Auto-Encoder [13] and Recursive Neural Tensor Networks [14].
To leverage the dependency parsing information, Tai et al.proposed a tree-structured
Long Short-Term Memory (LSTM) [16] in learning the representation of a document.
To model the n-gram patterns, Lai et al.[8] and Kalchbrenner et al.[6] both explored
using Convolutional Neural Networks (CNN) over the words in a sentence. To model
the word-sentence-document hierarchy, Tang et al.proposed to first use CNN over the
words to embed each sentence, then aggregate all the sentences by either simple pool-
ing or Gated Recurrent Neural Network to embed the whole document [18]. Compared
with our AAN model, these above neural network methods do not study the attention
mechanism.

To incorporate the different importances of the words in each sentence, as well as
the sentences in each document, attention mechanism [21] was introduced into text
representation learning. For example, Yang et al.[22] proposed a hierarchical attention
mechanism, which leverages the local semantic information in both word and sentence
levels. In document-level sentiment classification, Chen et al.further extended the hier-
archical attention mechanism to incorporate the user and product information with the
attention design for words and sentences [1]. Tang et al.explored modeling attentions
for different types of signals, including text content and text location [19]. Compared
with AAN, these above attention methods often assume the inputs as independent. As
a result, their attention definitions only have one single layer, which is from the in-
puts directly to the attention score output. Unlike these works, our AAN exploits the
correlations among the inputs (to our knowledge this is the first work).

3 Adaptive Attention Network

We first formulate the problem of review sentiment classification. As inputs, we have
a set of training documents D = {(d1, y1), ..., (dn, yn)}, where each di is a document
and yi ∈ Y is the sentiment class (e.g., Y = {1, ..., 5} indicating the ratings from “one
star” to “five stars”). As output, we want to build a model M, which can take a test
document d as inputs and predict a rating class in Y . Inspired by the pioneer work [17,

4 Adaptive Attention Network for Review Sentiment Classification

1], we choose to model each document as a sequence of sentences and each sentence as
a sequence of words. Formally, we denote a document as di = {si,1, ..., si,mi

}, where
each si,j is a sentence andmi is the number of sentences in di. We denote each sentence
si,j = {wi,j,1, ..., wi,j,m′

ij
}, where wi,j,k ∈ V is a word from the vocabulary V andm′ij

is the number of words in si,j .

3.1 Two-layer AAN Architecture

Next we develop the AAN model. We begin with reviewing existing attention mecha-
nism in [1]. As shown in Fig. 2(a), the existing attention mechanism generally takes a
set of vectors {h1, ...,hm} as inputs, and tries to compute an attention score αi for each
vector hi ∈ RK1 by

fi = v> tanh(Whi + b), (1)

αi =
exp(fi)∑m
j=1 exp(fj)

, (2)

where v ∈ RK2 , W ∈ RK2×K1 and b ∈ RK2 are learnable parameters. Based on the
attention scores, the output z ∈ RK2 is

z =
∑m

i=1 αihi. (3)

As we can see, the above attention definition treats each input hi independently. In
practice, the correlation between the inputs can be useful. For example, in Fig. 1(a), we
can see the necessity to consider the correlation between the salient word “high” with
the other words, so as to ensure its attention score to be fully aware of the context in
this specific review.

h1

α1

h2 hm

α2 αm

z

……

……

(a) Existing one-layer attention architecture

h1

α1

h2 hm

α2 αm

c

……

……

h1

β1

h2
hm

β2 βm

z

……

……

(b) Our two-layer AAN attention architecture

Fig. 2. Comparing our two-layer AAN with the existing one-layer attention architecture.

In order to take the input correlation into account, we develop a two-layer attention
hierarchy as shown in Fig. 2(b). Let us use the example in Fig. 1(a) again to illustrate

C. Zong et al 5

how we design such a hierarchy. For word attention, we denote each input hi as an
embedding for the i-th word in a sentence. To assign an appropriate attention score
to the salient word “high”, we first need to understand its context in the sentence. We
represent such a sentence context by a context embedding, and we compute it by Eq. 3
as

c =
∑m

i=1 αihi, (4)

where αi is estimated by Eq. 2 and c ∈ RK2 . This context embedding estimation corre-
sponds to our first layer of AAN in Fig. 2(b), where the αi’s are the first-layer attention
scores. Ideally, we want to prompt those salient words that “match” the context. There-
fore, we introduce a second layer of attention in Fig. 2(b), which measures how well hi

matches the context embedding c by a score bi and then outputs a final attention score
βi:

bi = h>i c, (5)

βi =
exp(bi)∑m
j=1 exp(bj)

. (6)

The βi’s are the second-layer, and the final, attention scores for AAN. Once having the
final attention scores of AAN, we compute the representation of the whole sentence as

z =
∑m

i=1 βihi. (7)

Remark: to help understand why mathematically Eq. 7 models the correlation among
the inputs, we can do some simple expansion:

z
1
=

∑m
i=1

exp(bi)∑m
j=1 exp(bj)

hi,

2
=

∑m
i=1

exp(h>i c)∑m
j=1 exp(h

>
j c)

hi,

3
=

∑m
i=1

exp(
∑m

k=1 αkh
>
i hk)∑m

j=1 exp(
∑m

k=1 αkh>j hk)
hi, (8)

where at step 1, we plug in Eq. 6; at step 2, we plug in Eq. 5; at step 3, we plug in Eq. 4.
As we can see in Eq. 8, the attention score for each input hi now becomes aware of the
correlation between hi and the other hk’s.

3.2 AAN for Review Modeling

We customize AAN for document-level sentiment classification. As suggested by [17,
1], we model each review as a hierarchy from words to sentences and finally a docu-
ment. Therefore, we can assign attention to both the words in the sentence level and the
sentences in the document level. Next, we illustrate how to take a review’s content, as
well as its user (who publishes this review) and product (which this review is about),
as inputs, and finally predict a sentiment class as output. We summarize our deep neu-
ral network architecture of using AAN for document-level sentiment classification in
Fig. 3. The architecture consists of three parts, as we shall introduce one by one next.

6 Adaptive Attention Network for Review Sentiment Classification

LSTM

w21 u p w22 u p w2m u p

AAN on words

……

word user product

……

……

h21 h22
h2m

sentence z2
(s)

LSTM

AAN on sentences

……

……

h1 h2
hL

review embedding
z

(r)

y
*

prediction

z1
(s)

zL
(s)

……

… …

Fig. 3. Using AAN for both words and sentences in document-level sentiment classification.

• Embedding from word to sentence. For each sentence, we aim to generate a sen-
tence embedding vector, from its words. First of all, for each word wj,k (k = 1, ...,mj)
in sentence sj , we assign an embedding vector wj,k ∈ RK0 . We pre-train these word
embedding vectors by word2vec [11]. Secondly, in order to incorporate the user and
product information, we also introduce an embedding vector u ∈ RK3 for each user
u and an embedding vector1 p ∈ RK3 for each product p. We choose to concatenate
each word embedding wj,k with the user embedding u and the product embedding p
as the inputs for sentence embedding. It is worth noting that, such a concatenation de-
sign is significantly different from the previous designs. For example, in [17], each user
(product) is represented with a matrix, which is multiplied with each wj,k to get the
input for sentence embedding. This matrix representation is likely to suffer from the
data insufficiency for those users (products) with limited reviews. In [1], neither user
nor product is used as input for sentence embedding, thus missing the opportunity of
enriching the sentence semantics with user and product information. Thirdly, given the
embedding concatenation for each word in the sentence, we employ a LSTM [15] to
generate a hidden output hj,k ∈ RK1 for each word.

Finally, we apply AAN to assign an attention score to each word. To incorporate
the user and product information, we start with extending the first layer attention score
definition as

f
(w)
j,k = v> tanh(W

(w)
1 hj,k + b1) + g

(w)
j,k ,

g
(w)
j,k = hj,kW

(u)
1 u+ hj,kW

(p)
1 p,

αj,k =
exp(f

(w)
j,k)∑m

l=1 exp(f
(w)
j,l)

, (9)

1 Generally, user and product can have different dimensions, but we set them as the same to
control the number of hyperparameters.

C. Zong et al 7

where g(w)
j,k is an extra term we introduce to indicate the interactions between word

and user, as well as word and product. W (w)
1 ∈ RK2×K1 , W (u)

1 ∈ RK2×K3 , W (p)
1 ∈

RK2×K3 and b1 ∈ RK2 are parameters. Then, we compute the second layer attention
score βj,k for each word in the same way as Eq. 6. In the end, we aggregate all the
words with their embedding vectors and the second-layer attentions to output a sentence
embedding z

(s)
j ∈ RK2 by Eq. 7.

•Embedding from sentence to review. Given the embedding of each sentence, we aim
to generate a review embedding vector, from its sentences. We take a similar procedure
as embedding from word to sentence. Specifically, we take all the sentence embeddings
as input, and employ a LSTM to generate a hidden output hj ∈ RK1 for each sentence
sj (for j = 1, ..., L). Then, we apply AAN to assign an attention score to each sentence
embedding vector. We use the similar extension in Eq. 9 to the first layer attention score
definition for sentence. Denote W (s)

2 ∈ RK2×K1 , W (u)
2 ∈ RK2×K3 , W (p)

2 ∈ RK2×K3

and b2 ∈ RK2 as parameters. Thus we compute the first-layer attention score for each
sentence as

f
(s)
j = v> tanh(W

(s)
2 hj + b2) + g

(s)
j ,

g
(s)
j = hjW

(u)
2 u+ hjW

(p)
2 p.

αj =
exp(f

(s)
j)∑L

l=1 exp(f
(s)
l)

. (10)

Then, we compute the second-layer attention score βj for each sentence in the same
way as Eq. 6. Finally, we aggregate all the sentences with their embedding vectors and
the second-layer attentions in Eq. 7 to output a review embedding z

(r)
j ∈ RK2 .

• Sentiment class prediction. Given the review embedding, we aim to generate a pre-
diction of the review’s sentiment class. In our design, we feed the review embedding
z
(r)
j into a multi-layer perceptron (MLP), which outputs the probabilities of this review

belonging to each class in Y:

y∗ = softmax(W ′z(r)j + b′), (11)

where W ′ ∈ R|Y|×K2 are bc ∈ RY are parameters.
We can link y∗ with the ground truth label of this review, so as to supervise the

model training. Denote Θ as the set of parameters, including the AAN parameters on
words, the AAN parameters on sentences, the LSTM parameters on words, the LSTM
parameters on sentences and the sentiment class prediction MLP parameters. For the
training data set D, we design the objective function as

L = −
∑n

i=1 logP (yi|D) + λΩ(Θ), (12)

where P (yi|D) is the probability of predicting review di as class yi, and it can be
computed by Eq. 11. Ω(·) is a regularization function, e.g., it sums up the `2-norm of
each parameter in Θ. λ > 0 is a trade-off parameter.

8 Adaptive Attention Network for Review Sentiment Classification

4 Experiments

We evaluate AAN on three public benchmark data sets, including IMDB, Yelp 2013
and Yelp 2014 which are review texts including user/product information developed
by[17]. Each record in the data sets is composed of a user ID, a product ID, a review
and a rating. Table 1 list the statistics of the datasets including number of users, number
of products, number of sentiment categories, number of documents, average number
of documents per user, average number of documents per product, average length of
document, average length of sentence, size of vocabulary in a data set.

Table 1. Statistics of three public data sets.

Data user product class doc doc/user doc/product sen/doc word/sen voc
IMDB 1,310 1,635 10 84,919 64.82 51.94 16.08 24.54 105,373

Yelp 2013 1,631 1,633 5 78,966 48.42 48.36 10.89 17.38 48957
Yelp 2014 4,818 4,194 5 231,163 47.97 55.11 11.41 17.26 93197

We follow [17] to employ two evaluation metrics: 1) accuracy Acc = T
N , where T

is the number of ratings predicted correctly and N is the size of the testing set; 2) root

mean square error RMSE =

√∑
i(gdi−pri)2

N , where gdi and pri are the gold rating
and the predicted rating for document i, respectively.

We learn the word embedding by word2vec [10] and set the embedding dimension as
K0 = 200. We set the dimensions of hidden states and cell memory states in LSTM,
sentence embedding and review embedding, user and product embeddings as K1 =
100,K2 = 100,K3 = 50 respectively, which fit well to our GPU memory. We organize
the reviews into batches for training. For varying length of sentences and reviews in
each batch, we do zero padding in using LSTM. We set the batch size as 32. We set
the regularization weight as λ = 1E-5. We use the data splits provided by [17], which
separate each data set into training, development and testing sets with a 80/10/10 split.
We adadelta [23] for stochastic gradient descent.

4.1 Comparison with Baselines

We compare AAN with the state-of-the-art baselines, as listed below. Majority: it as-
signs the majority sentiment category in the training set to each test review. Trigram:
it uses trigrams as features to train a Support Vector Machine (SVM) [12] for review
classification. TextFeature: it extract several text features, such as word and charac-
ter n-grams, sentiment lexicons to train a SVM [7]. UPF: it was introduced by [17].
It extracts user and product features like [5], and concatenates them with the features
in Trigram and TextFeature for SVM. AvgWordvec: it learns 200-dimensional word
embeddings by word2vec [11] and uses the average word embeddings of each review
for SVM training. SSWE: it learns sentiment-specific word embeddings and thus the
review embedding for SVM classification [20]. RNTN + Recurrent: its learns a RNTN

C. Zong et al 9

[14] for sentence embedding, and a recurrent neural network (RNN) for review embed-
ding. Paragraph Vector: it uses the paragraph structure to learn the embedding for
varying-length sentences and documents [9]. JMARS: it combines user and review as-
pects by collaborative filtering and topic modeling for review sentiment classification
[3]. UPNN: it takes user-text and product-text consistency matrices as additional inputs,
to assist the embedding for words, sentences and reviews [17]. NSC & NSC + LA &
NSC + UPA: these three neural network models all explore the word-sentence-review
hierarchy [1]. NSC uses a mean pooling in sentence and review embedding. NSC + LA
improves NSC with a local semantic attention (LA) [22]. NSC + UPA improves NSC
by considering user and product in the attention definitions.

Table 2. Results of all the approaches on IMDB, Yelp2013 and Yelp2014 datasets. Acc (the
higher, the better) and RMSE (the lower, the better) are two evaluation criteria. The best perfor-
mances in each group are in boldface.

Settings Models
IMDB Yelp13 Yelp14

Acc RMSE Acc RMSE Acc RMSE
Majority 0.196 2.495 0.411 1.060 0.392 1.097

Trigram [12] 0.399 1.783 0.569 0.814 0.577 0.804
TextFeature [12] 0.402 1.793 0.556 0.845 0.572 0.800

AvgWordvec + SVM [11] 0.304 1.985 0.526 0.898 0.530 0.893
no U, no P SSWE + SVM [20] 0.312 1.973 0.549 0.849 0.557 0.851

Paragraph Vector [9] 0.341 1.814 0.554 0.832 0.564 0.802
RNTN + Recurrent [14] 0.400 1.764 0.574 0.804 0.582 0.821
UPNN (no U, no P) [17] 0.405 1.629 0.577 0.812 0.585 0.808

NSC [1] 0.438 1.495 0.628 0.703 0.635 0.687
NSC + LA [1] 0.474 1.391 0.631 0.708 0.641 0.683

AAN (no U, no P) 0.483 1.385 0.636 0.694 0.643 0.681
Trigram + UPF [17] 0.404 1.764 0.570 0.803 0.576 0.789

TextFeature + UPF [17] 0.402 1.774 0.561 1.822 0.579 0.791
with U and P JMARS [3] N/A 1.773 N/A 0.985 N/A 0.999

UPNN (U + P) [17] 0.435 1.602 0.596 0.784 0.608 0.764
NSC + UPA [1] 0.513 1.299 0.645 0.689 0.666 0.655
AAN (U + P) 0.538 1.243 0.662 0.663 0.670 0.646

Table 2 shows the performance. We test all the methods in two settings: 1) with user
and product information, denoted by “with U and P”; 2) without them, denoted by “no
U, no P”. Note that, because we use exactly the same data set splits and experimental
settings with [17], we can directly borrow some of their results in the “no U, no P” set-
ting, including “Majority”, “Trigram”, “TextFeature”, “AvgWordvec + SVM”, “SSWE
+ SVM”, “Paragraph Vector”, “RNTN + Recurrent” and “UPNN (no U, no P)”.

In the setting of “no U, no P”, AAN outperforms AvgWordvec + SVM, SSWE +
SVM, Paragraph Vector and RNTN + Recurrent, which shows the necessity to differen-
tiate the words and sentences in the review representations for sentiment classification.
Besides, AAN outperforms both NSC and NSC + LA, which justifies our motivation to
capture correlations among words or sentences, since NSC and NSC + LA both only
model the words and sentences individually in the attention estimation.

10 Adaptive Attention Network for Review Sentiment Classification

In the setting of “with U and P”, AAN still outperforms all the baselines in all of the
three datasets. This confirms the superiority of our AAN model in exploring the atten-
tion mechanism, as well as the user and product information. It is worth noting that, the
improvement of our AAN (U + P) model over NSC + UPA is larger than those of AAN
(no U, no P) over UPNN (U + P) and NSC + LA. This means, in addition to the benefit
we obtained from our novel two-layer attention mechanism, our new design of incor-
porating the user and product information (i.e., concatenating each word embedding
with the user and product embeddings) can indeed help improve the classification re-
sults. Such an observation justifies our conjecture of how to model the user and product
information in Sect. 3.2.

4.2 Impact of User and Product Embeddings

We further study the impact of using the user and product embeddings in our AAN
model. We perform AAN in four different settings, depending on whether we use the
user or product embedding or not. We summarize the results in Table 3. As we can
see, AAN (P + U) outperforms the other three models, which suggests both user and
product information can help improve the sentiment classification results. This is con-
sistent with our intuition that, the more information we exploit, the better result we will
generally have. We also observe that, AAN (only U) outperforms AAN (only P), which
implies that user preferences seems to be more important than the product properties in
sentiment classification. We may understand it as that the reviews are subjective, thus
the user preferences play a more important role in sentiment classification. Finally, we
also see that, both AAN (only U) and AAN (only P) outperform AAN (no U, no P),
which suggests both user and product are useful for sentiment classification.

Table 3. Impacts of using user and product information in AAN.

Models
IMDB Yelp13 Yelp14

Acc RMSE Acc RMSE Acc RMSE
AAN (P + U) 0.538 1.243 0.662 0.663 0.670 0.646
AAN (only U) 0.527 1.264 0.653 0.674 0.666 0.652
AAN (only P) 0.485 1.373 0.632 0.695 0.641 0.670
AAN (no U, no P) 0.483 1.385 0.636 0.694 0.643 0.681

4.3 Impact of Adaptive Attention Mechanism

We also study the impact of using AAN in both word and sentence levels. In Table 4,
the first column denoted by “AA” indicates that we exploit our attention mechanism in
the word level, and “MP” indicates that we exploit a simple mean pooling without our
attention mechanism in the word level. From Table 4, we can see that employing our
attention mechanism in both word and sentence levels (i.e., AA + AA in the third row of
Table 4) outperforms all the other settings. This means: 1) it is important to use adaptive
attention in both the word and sentence level; 2) adaptive attention is more effective than

C. Zong et al 11

the simple mean pooling, since it tries to differentiate the importances of different words
and sentences. We also make another interesting observation, by comparing the fourth
row (AA + MP) and the fifth row (MP + AA) in Table 4. The results show that, AA +
MP seems to slightly outperform MP + AA; i.e., using AAN in the word level seems to
be better than in the sentence level. The possible reason is that, the number of words is
much larger than that of sentences, thus the noise is bigger in the word level. Besides,
since there are more words than sentences, we may have more data to better learn the
attentions in the word level than in the sentence level.

Table 4. Impact of using AAN in both word and sentence levels. “AA” indicates using AAN.
“MP” indicates a simple mean pooling without attention. The best results are in boldface.

Attention mechanisms IMDB Yelp13 Yelp14
Word-level Sentence-level Acc RMSE Acc RMSE Acc RMSE

AA AA 0.538 1.243 0.662 0.663 0.670 0.646
AA MP 0.519 1.276 0.650 0.682 0.664 0.650
MP AA 0.513 1.281 0.648 0.690 0.665 0.656
MP MP 0.496 1.339 0.643 0.685 0.661 0.659

5 Conclusion

In this paper, we identify that the existing attention mechanisms often suffer from a
significant limitation, which assumes the inputs as independent. Therefore, we propose
a novel Adaptive Attention Network to model the correlation among the words and
the sentences in their attention definitions. We also customize AAN for document-level
sentiment classification, especially incorporating the user and product information. We
evaluate AAN on three public benchmark data sets and show that it outperforms the
state-of-the-art baselines. In the future, we plan to extend AAN with syntactic structure
of the text, such as dependency trees, so as to further improve the classification.

Acknowledgments

We thank the National Key Research and Development Program of China (2016YFB020
1900), National Natural Science Foundation of China (U1611262), Guangdong Natural
Science Funds for Distinguished Young Scholar (2017A030306028), Pearl River Sci-
ence and Technology New Star of Guangzhou, and Guangdong Province Key Labora-
tory of Big Data Analysis and Processing for the support of this research. Zheng thanks
the support of the National Research Foundation, Prime Ministers Office, Singapore
under its Campus for Research Excellence and Technological Enterprise (CREATE)
programme.

12 Adaptive Attention Network for Review Sentiment Classification

References

1. Chen, H., Sun, M., Tu, C., Lin, Y., Liu, Z.: Neural sentiment classification with user and
product attention. In: EMNLP 2006, pp. 1650–1659 (2016)

2. Cheng, K., Li, J., Tang, J., Liu, H.: Unsupervised sentiment analysis with signed social net-
works. In: AAAI, pp. 3429–3435 (2017)

3. Diao, Q., Qiu, M., Wu, C.Y., Smola, A.J., Jiang, J., Wang, C.: Jointly modeling aspects, ratings
and sentiments for movie recommendation (JMARS). In: SIGKDD, pp. 193–202 (2014)

4. Ding, X., Liu, B., Yu, P.S.: A holistic lexicon-based approach to opinion mining. In: WSDM,
pp. 231–240 (2008)

5. Gao, W., Yoshinaga, N., Kaji, N., Kitsuregawa, M.: Modeling user leniency and product
popularity for sentiment classification. In: IJCNLP, pp. 1107–1111 (2013)

6. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling
sentences. In: ACL, pp. 655–665 (2014)

7. Kiritchenko, S., Zhu, X., Mohammad, S.M.: Sentiment analysis of short informal texts. J.
Artif. Intell. Res. 50, 723–762 (2014)

8. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classifica-
tion. In: AAAI, pp. 2267–2273 (2015)

9. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. CoRR.
abs/1405.4053 (2014)

10. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space. CoRR. abs/1301.3781 (2013)

11. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of
words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

12. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: Sentiment classification using machine
learning techniques. In: EMNLP, pp. 79–86 (2002)

13. Socher, R., Pennington, J., Huang, E.H., Ng, A.Y., Manning, C.D.: Semi-supervised recur-
sive autoencoders for predicting sentiment distributions. In: EMNLP, pp. 151–161 (2011)

14. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recursive
deep models for semantic compositionality over a sentiment treebank. In: EMNLP, 1642
(2013)

15. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
NIPS, pp. 3104–3112 (2014)

16. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-
structured long short-term memory networks. In: ACL, pp. 1556–1566 (2015)

17. Tang, D., Qin, B., Liu, T.: Learning semantic representations of users and products for
document level sentiment classification. In: ACL, pp. 1014–1023 (2015)

18. Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network for
sentiment classification. In: EMNLP, pp. 1422–1432 (2015)

19. Tang, D., Qin, B., Liu, T.: Aspect level sentiment classification with deep memory network.
In: EMNLP, pp. 214–224 (2016)

20. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific word
embedding for twitter sentiment classification. In: ACL, pp. 1555–1565 (2014)

21. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.C., Salakhutdinov, R., Zemel, R.S., Bengio,
Y.: Show, attend and tell: Neural image caption generation with visual attention. In: ICML,
pp. 2048–2057 (2015)

22. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A.J., Hovy, E.H.: Hierarchical attention net-
works for document classification. In: NAACL, pp. 1480–1489 (2016)

23. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. CoRR. abs/1212.5701 (2012)

